CONFIGURATION OPTIONS

[ON/OFF] [2] CONFIGURATION MENU:

$[<\mathrm{dB}\rangle] \quad$ Select configuration letter (LA101)
[$<\mathrm{Hz}>$]
[PAGE] \& [OPT]
[< RANGE >]
[1] to [5]
[L/R]
$\left.{ }^{[\star}\right]$ [PRINT]
[SEQ]
LA101 configurations are:
LA101 configurations are:
B Default seq. bank ($0-10)$
F Frequency display (rounded/true) R Remote baud rate
Start up level (MUTE or preset 1-5)
U
W
Z
Z
Start up frequency (preset 1-5) Level Units (dBu/dBm, dBV, Volts)
Monitor volume ($0-16$), if fitted Weighting on ${ }^{[\star]}[2]$ Output impedance (10,75 or 600 W)
A102 configurations are:
A Auto sequence print
C Compartments per memory Distortion units (dB or \%) Graph width
Graph fit (peak, OdB, centre)
G Graph scale dB/cm
Graph height cm
Lines per inch (6-9)
Graph normalisation
M Top margin ($1 / 6^{\prime \prime}$ lines)
V Lines per page ($1 / 6^{\prime \prime}$ lines) Printer type Remote baud rate Tolerance
Level Units (dB, dBV, W, V) Monitor volume (0-16) W Watts into 8 W display X Date operation
Auto Store Results (in memory...)

MEASUREMENT OPTIONS

 1 RMS \(2-100 \mathrm{kHz}\)
 2 RMS \(22-22 \mathrm{kHz}\)
 \(3 \mathrm{VU} 22-22 \mathrm{kHz}\)
 4 Twin level and phase bar graphs
 5 PPM \(22-22 \mathrm{kHz}\)
 7 RMS, A weighted
 \(8 \mathrm{VU} 2-100 \mathrm{kHz}\)
 9 RMS \(2-100 \mathrm{kHz}\) slow averaging
 10 PPM \(2-100 \mathrm{kHz}\)
 11 RMS \(400-100 \mathrm{kHz}\)
 12 RMS \(400-22 \mathrm{kHz}\)
 14 Twin bar, \(400-100 \mathrm{kHz}\)
 \(15 \mathrm{PPM} 400-22 \mathrm{kHz}\)
 NOISE
 NOISE
 1 CCIR468-3 weighted quasi-peak
2 CCIR468-3 unweighted quasi-peak
3 RMS $22-22 \mathrm{kHz}$
4 RUMBLE unweighted, slow
5 RUMBLE weighted, slow
6 CCIR weighted, ARM- 1 k
7 CCIR weighted, RMS
8 A weighted, RMS
9 CCIR weighted, ARM-2k
$102 \mathrm{~Hz}-100 \mathrm{kHz}$, quasi-peak
12 CCIR unweighted, $400 \mathrm{~Hz}-22 \mathrm{kHz}$
$13 \mathrm{RMS}, 400 \mathrm{~Hz}-22 \mathrm{kHz}$
14 CCIR unweighted PPM
15 CCIR weighted PPM

Hold [${ }^{*}$] and press 1-5 for options 6-10. Press $\triangle>$ to select options $11-15$ and $[\mathrm{K}]$ to return to options $1-5$. For example, press [Leved] [option] [4] for the twin bar graph.

CROSSTALK
1 100Hz narrow band, RMS
2315 Hz narrow band, RMS
3 kHz narrow band, RMS
46.3 kHz narrow band, RMS

5 H 10 kHz narrow band, RMS
$6 \mathrm{40Hz}$ narrow band, RMS
7 150-300Hz narrow band, RMS
$82 \mathrm{k}-20 \mathrm{kHz}$ narrow band, RMS
915 kHz narrow band, RMS

DIStORTION

1100 Hz RMS THD, $200 \mathrm{~Hz}-22 \mathrm{kHz}$
2315 Hz RMS 3rd harm, narrow band
$\begin{array}{ll}3 & 1 \mathrm{kHz} \text { RMS THD, } 2 \mathrm{k}-22 \mathrm{kHz} \\ 4 & 6.3 \mathrm{kHz} \text { RMS THD, } 12 \mathrm{k}-22 \mathrm{kHz}\end{array}$
510 kHz RMS THD, 20k-22kHz
640 Hz RMS $2 \mathrm{~Hz}-400 \mathrm{~Hz}$
7
7
1 kHz RMS 3 rd harm. - - experimental 81 kHz notch only, $22-22 \mathrm{kHz}$
96.3 kHz notch only, $22-22 \mathrm{kHz}$ 96.3 kHz notch only, $22-22 \mathrm{kHz}$ 10 10kHz notch only, $22-22 \mathrm{kHz}$
11100 Hz CCIR weighted quasi-peak 11100 Hz CCIR weighted quasi-peak
131 kHz CCIR weighted quasi-peak 146.3 kHz CCIR weighted quasi-peak 1510 kHz CCIR weighted quasi-peak
WOW \& FLUTTER etc
1 W\&F IEC386 weighted quasi-peak
2 W\&F IEC386 unweighted q-peak
$4 \mathrm{Q}-\mathrm{D} 40 \mathrm{~Hz}$ RMS, $400 \mathrm{~Hz}-22 \mathrm{kHz}$
5 Difference freq dist, 2 nd order, 70 Hz
6 W\&F weighted RMS
7 W\&F unweighted RMS
8 FIM (fequency intermod)
11 Speed (3150 Hz reference)
12 Speed (3125 Hz reference)

LA101 MANUAL MODE
[$\langle\mathrm{Hz}\rangle$]
[$\langle\mathrm{dB}\rangle$]
[${ }^{*}$] $[<\mathrm{Hz}\rangle$]
[*] $[<\mathrm{OB}\rangle$]
[1] to [5]
[L/R]
[MUTE]
[*] [Z]
[*] [SQ]
[*] [1]
[*] [2]
[*] [3]
[*] [4]
$\left.{ }^{[*}\right][5][n]$
[MUIE][< Hz >]
[MUTE] [n]

Frequency up/down in third octave steps Level up/down in 1dB steps
Frequency up/down in fine steps, 32 per octave Level up/down in 0.01 dB steps
Presets: frequency after $[<\mathrm{Hz}>]$, level after $[<\mathrm{dB}>]$ Channels: Both (L+R), Left or Right
Mute output (with selected impedance) Output impedance: 10W (rear XLRs only), $75 \mathrm{~W}, 600 \mathrm{~W}$ (front jack sockets only) Sine/square waveform
Set/clear Test Level (for relative levels) Weighting curve (see configuration W) ZC - level correction for 600W load MC - level correction for matched load HC - level correction for 10 kW load Waveform: DC0, DC+, DC-, TRI, SAW Program preset $n(1-5)$ with current frequency after $[<\mathrm{Hz}\rangle$] or current level after $[<\mathrm{OB}\rangle$]

LA102 MANUAL MODE

[LEVEL] Measure level, frequency and phase [NOISE] Measure noise
[CRSTK] Measure crosstalk
[DIST]
[W\&F]
[OPTION] [n]
Measure THD (315Hz is third harmonic only) Measure W\&F, QD, Diff. Freq. Dist., speed etc Select option for above measurements. Hold [$\left.{ }^{\star}\right]$ for options 6-10. Press $[>]$ for options 11-15. See Measurement Options table on next page é
[< RANGE >] Set and lock range. Autoranging is enabled by pressing a Measure key.
[L/R] Left/right channel select
[LISTEN] Monitor speaker on/off
[LISTEN] [>] Increase monitor volume
[LISTEN] [<]
[*] [Z]
[*] [UNITS]
Units: dBu/dBm, Watts, dBV, Vol
[Set/clear the Test Level (for relative levels)
[*] [PKH] Peak hold mode (PKH/OFF)
[*] [FIX] FIX/AUTO range
$\left.{ }^{[\star}\right]$ [HPF] $\quad 400 \mathrm{~Hz}$ High pass filter (on level options 1-5)
$\left.{ }^{[*}\right]^{[5]}$ [5] Expanded bar graph (ZOOM/NORM)
[*] [LISTEN] Print displayed level and frequency
The bar graph always shows the absolute level in dBu except when dBV units are selected when it shows absolute dBV.

SETTING THE LA102 DATE

[ON/OFF][4] DATE EDITOR
$[<] \&[>] \quad$ Change the day, month or year at cursor
[OPT] \& [PAGE] Move cursor left/right (day, month, year) [SEQ] Exit to Manual Mode
Set configuration X 1 or X 2 to print the date.

Lindos

LA100

REFERENCE CARD
The LA100 Audio Analyser operates in two distinct modes, manual mode and automatic sequence mode, switched by pressing the [SEQ] key. The sequence results are displayed on the unit's LCD and may be printed by connecting an Epson, IBM or Hewlett Packard compatible printer to the RS232 socket on the LA102. A computer is not necessary for manual or automatic testing, although full computer control is possible.

Tapping the [ON/OFF] key briefly on either unit will reset it to its power-on state determined by CONFIGURATION OPTIONS held in non-volatile memory. Many apparent faults such as failure to print, incorrect preset frequencies or levels, failure to start up at 1 kHz etc can be the result of re-configuration, either accidentally or by another user. To reset all settings to their default, hold [ON/ OFF] and press [3] to obtain the RESET MENU and then press [1].
[KEY] [n] means first press [KEY] and then press [n]
$\left.{ }^{[\star}\right][\mathrm{KEY}]$ means hold $\left[{ }^{\star}\right]$ and press [KEY], in particular:
${ }^{[*]}[1]$ to $[\star][4]$ are used for the numbers 6-9 and $[\star][5]$ for 0 or 10 Most keys repeat if held for a short while.

The units are always on while mains power is connected. They may also be powered from the built-in NiCd batteries which are switched on/off by pressing the [ON/OFF] key for at least $1 / 4 \mathrm{~s}$. A ' B ' is displayed when battery power is on.
${ }^{\text {[*] }}$ [ON/OFF] Battery lock (disables 5 minute auto switch-off) [MUTE] [ON/OFF] Turn LA101 on with output MUTEd.

LA101 RESET MENU

[on/OFF] [3] RESET MENU:

[1]
[2]
2] Reset frequency and level presets to defaults
[3] Reset configuration options to default values
[4] Reset sequence definitions \& source ID

LA102 RESET MENU

[on/OFF] [3] RESET MENU.

[1] Reset all but results and user tolerances
[2] Reset measurement options \& [*] [FIX] ranges
[3]
$[3]$
$[4]$
Clear user tolerance definitions (1-5)

Fourth Edition,	LA100 V6.7 software	Lindos Electronics
© November 1999,	Lindos Electronics.	Saddlemakers Lane
Telephone:	+441394380307	Melton
Fax:	+441394385156	WOODBRIDGE
email:	info@lindos.co.uk	Suffolk IP12 1PP
www:	http://www.lindos.co.uk/	ENGLAND

LA101 SEQUENCE MODE

PREPARE TO RUN A SEQUENCE
[SEQ]
Channels: Both (L+R), L or R
[1] to [5]
$\left.{ }^{[\star}\right][1]$ to $\left.{ }^{[\star}\right][5]$
[*] [SEQ]
[MUTE]
Run sequence 1 to 5 (or $[\ll][\mathrm{BB}]$ For menu)
Run sequence 6 to 10
Run a single segment
Stop sequence (hold key until unit stops) if running, or repeat the last sequence/segment.
Sequences are relative to the Test Level set in manual mode.

LA102 SEQUENCE MODE

[SEQ]
PREPARE TO RECEIVE A SEQUENCE:
[*] [SEQ] [n]
[*] [IPF]
[SEQ]
Sequences are independant of manual measurement option, range, Test Level and channel settings.
Example: To run sequence 1, press [SEQ] on the LA102 and then [SEQ] [1] on the LA101. Press [PAGE] to see the results:

SEQUENCE RESULTS

[PAGE] DISPLAY RESULTS:
[*] [PRINT] Print results on printer
[*] [PRINT] [*] [n] Print n copies of results (1-5)
[LEVEL] Test Level results
[NOISE] Noise results
[CRSTK] etc Crosstalk results etc
[PAGE]

[OPTION]

$[<] \&[>]$
$[*][<]$
$[\star][>]$
[L/R]
[*] [L/R]
[^] [TL]
[*] [UNITS]
[*] [MEM]
$\left.{ }^{[*}\right][1][n]$.
$\left.{ }^{[*}\right][2][n]$
[*] [3] [n]
[*] [4] [n]
[*] [5] [n]

USING TEST TAPES \& DISCS

[SEQ] [OPT] [2] TEST TAPE MODE (discrete tones \& speech) [SEQ] [OPT] [3] FREQUENCY SWEEP MODE (no speech): [L/R] Manual channel select (when sweep is on both) [PAGE] Display interpolated frequency response graph The LA102 can be used with any test tape or disc. Results will be stored as sweep segment U and may be displayed, printed or checked against a tolerance in the usual way (see above).

EDITING SEQUENCES
[on/OFF] [1] LA101 SEQUENCE EDITOR:
[1] to [5] Edit sequence 1-5 (hold [*] for 6-10)
[${ }^{\star}$ [[SEQ] Edit FSK source ID (sent with sequence)
[SEQ]

Exit to manual mode

See below for editor keys

EDITING TOLERANCES \& HEADING

[ON/OFF] [1] LA102 TOLERANCE EDITOR:
[*] [SEQ] Edit printout heading (up to 40 characters)
[1] to [5] Edit tolerance 1-5 (hold [^] to view 6-10)
$[<] \&[>] \quad$ Select tolerance to edit or view (1-15)
PAGE]
[*] [PRINT]
[SEQ]
Edit/view selected tolerance
Print all tolerance definitions Exit to manual mode
See below for editor keys

EDITOR KEYS

$[\langle\mathrm{Hz}\rangle] \quad$ Cycle through characters (LA101)
$[\langle\mathrm{dB}\rangle$] Move cursor (hold [*] to move by a screen)
$\left.{ }^{[\star]}[\mathrm{Hz}\rangle\right] \quad$ Go to ' + ' and cycle through LA101 symbols
${ }^{[\star]}[<\mathrm{Hz}] \quad$ Go to ' Z ' and cycle through LA101 letters
[< RANGE >]
[PAGE] \& [OPT]
[*] [RANGE >]
[*] [< RANGE]
[L/R]
[*] [Z]
[1] to [5]
[*] [MUTE] [n]
[*] [LISTEN] [n]
[SEQ]
[*] [SEQ] Cycle through characters (LA102)
Move cursor (hold [*] to move by a screen) Go to ' + ' and cycle through LA102 symbols Go to ' Z ' and cycle through LA102 letters Insert a space at the cursor
Delete character at the cursor (Zap!)
Enter digit 1-5 (hold [*] for 6-9 and 0)
Copy current sequence to sequence $n, 1-10$
Copy current tolerance to user tolerance $n, 1-5$ Copy current tolerance
Exit to manual mode

Character order is
ABCDEFGHIJKLMNOPQRSTUVWXYZ
bcdhkmnoruxz@!?\%:<>=さ]/+-.0123456789,"

LA101 USER WEIGHTING EDITOR

[ON/OFF] [4] WEIGHTING EDITOR:
[1] to [5] Edit weighting 1 to 5 (hold $[\star]$ to view 6-10):
$[<\mathrm{Hz}\rangle] \quad$ Move the cursor in third octave steps
$[\langle\mathrm{dB}\rangle] \quad$ Change weight by $\pm 1 \mathrm{~dB}$ (hold $\left.{ }^{*}\right]$ for 0.01 dB)
$[\star][<\mathrm{Hz}\rangle] \quad$ Change the graph scale (zoom in/out)
$[\mathrm{L} / \mathrm{R}] \quad$ Copy the current weight to the next one
[1] to [5] Set the weight to the preset level
$[*][L / R] \quad$ Invert the entire weighting curve
[*] [1]
[*] [MUTE] [n]
[*] [SEQ]
[SEQ]
Normalise the curve to the cursor frequency Copy the weighting curve to a user one (1-5)

Exit from the editor
Set configuration W to the weighting number and use [*] [2] (in manual mode) to select the weighting.

TEST SEGMENTS

	Measurement Defau	fault Leve		
A	Crosstalk 40, 100, 315, 1k, 6.3k, 10kHz 00	0dB/50us	6 s	6
B	Crosstalk 100, 1k, $6.3 \mathrm{k}, 10 \mathrm{kHz}$	OdB	2s	4
C	Crosstalk 40, 100, 315, 1k, 6.3k, 10kHz	OdB	6 s	6
D	Distortion 100, 1k, 6.3 kHz	+8dB	6 s	3
E	Distortion $100 \mathrm{~Hz}+9 \mathrm{~dB}, 1 \mathrm{kHz}-10 \mathrm{~dB}, 1 \mathrm{kHz}+9 \mathrm{~dB}-1$	dB -10/+9dB	6 s	3
F	Distortion 40, 100, 315, 1k, 6.3k, 10kHz	+8dB	18s	6
G	Distortion 40, 100, 315, 1k, 6.3k, 10kHz +8d	+8dB/50us	18s	6
H	$3 \% \mathrm{MOL}$ at 1 kHz	0 to 8dB	81/2S	1
1	Distortion $100+8 \mathrm{~dB}, 1 \mathrm{k}+8 \mathrm{~dB}, 100-10 \mathrm{~dB} 1 \mathrm{k}-10 \mathrm{~dB}$	10dB +8/-10	8 s	4
J	Crosstalk 40, 100, 315, 1k, 6.3k, 10kHz	-10dB	6 s	6
K	User levels 1 kHz 0 to	0 to -50dB	6 s	6
L	Noise RMS, A weighted and unweighted		8 s	2
M	Noise CCIR468-3 peak wtd, peak unwtd and mean w	mean wtd	30s	3
N	Noise CCIR468-3 peak wtd, peak unwtd and mean w	mean wtd	8 s	3
O	Sweep 20Hz-20kHz (British Telecom spec EPS84)	S84) -10dB	5 s	26
P	Sweep 20Hz-20kHz (18dB headroom)	-20dB	5 s	20
Q	Sweep 20Hz-20kHz (18dB headroom)	-12dB	5 s	20
R	Sweep $20 \mathrm{~Hz}-20 \mathrm{kHz}$ (18dB headroom)	-10dB	5 s	20
S	Sweep $20 \mathrm{~Hz}-20 \mathrm{kHz}$ (18dB headroom)	-10dB	20s	20
T	Test level, 1 kHz 0 dB	0 dB	1 s	1
U	Sweep 20Hz-20kHz (8dB headroom)	OdB	5 s	20
V	Test level, 400 Hz 0dB	OdB	1s	1
W	Wow \& flutter, 3.125 kHz pk wtd, mn wtd, spd \& phas	\& phase OdB	12s	4
X	Fast sweep 20Hz-20kHz	OdB	$11 / 2 \mathrm{~S}$	20
Y	Phase 40, 100, 1k, 6.3k, 10k, 15kHz (Mean) 0d	0dB/50us	3 s	6
Z	Phase 40, 100, 1k, 6.3k, 10k, 15kHz (Mean)	OdB	3 s	6
c	Crosstalk 15 kHz	0 dB	3 s	1
d	Difference freq. distortion, 70 Hz , 2nd order at 1 kHz	1 kHz OdB	2s	1
h	$3 \% \mathrm{MOL}$ at 315 Hz	0 to 8dB	81/2s	1
0	Sweep 300Hz-18kHz	OdB	5 s	19
r	Sweep 30Hz-4kHz	OdB	5 s	22
u	Sweep 10Hz-30kHz	OdB	5 s	24
x	Sweep $300 \mathrm{~Hz}-8 \mathrm{kHz}$	OdB	5 s	15

CONTROL SEGMENTS

,d,l Tone bursts/tone sets. !freq,duration,level,freq... (in $\mathrm{Hz}, \mathrm{ms} \& \mathrm{~dB}$) "text" Send text message to the LA102 measuring set, up to 21 chars text" Display text message on the LA101 display, up to 21 characters
< Repeat last segment, until interrupted by a key press
<< Repeat whole sequence, until interrupted by a key press
$\pm n \quad$ Select tolerance $n(1-16)$ in the LA102
$\% n, m$ Set output impedance $n(10,75$ or 600$)$ in ohms and ZC mode m $n \quad$ Set oscillator test level to n dBu.
$. n, m \quad$ Select physical output channel n and logical channel m
$>n \quad$ Run sequence n as a sub-sequence and then continue
? Pause until a key is pressed on the LA101

EXAMPLES

Example sequence: A 5 s sweep at -10 dB , distortion at six frequencies at $+4 \mathrm{~dB}, \mathrm{CCIR}$ weighted noise, $\mathrm{W} \& \mathrm{~F}$ and phase: "EXAMPLE" TRF+4NWZ

Example tone burst: A 315 Hz 20 ms tone burst at $-4 \mathrm{~dB}, 5 \mathrm{~s}$ of silence and a 2 kHz 50 ms tone burst at +6.7 dB :
"BURSTS" "315Hz"!315,20,-4,0,5000 "2kHz"!2000,50,+6.7
Example tolerance: Test level $0 \pm 0.5 \mathrm{~dB}$, distortion below -56 dB (all frequencies) and frequency response $-1 \pm 2 \mathrm{~dB}$ below 100 Hz ,
$0 \pm 0.5 \mathrm{~dB}$ for $100 \mathrm{~Hz}-6.3 \mathrm{kHz}$ and not specified above 6.3 kHz .
"TAPE CHECK" T $\pm .5$ DF-56 PQRSUX-1 $\pm 2,,,, \pm 0.5,,,, ?$

